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ROTATION DESIGNS FOR SAMPLING ON REPEATED OCCASIONS*

Jo Ni K. Rao and Jack E. Graham
Jowa State University

1. INTRODUCTION

There are meny studies, notably in sociological and economic researéh,
which are concerned with estimating cheracteristics of a population on
trepeated occasions’ in order to measure time-trends as well as the current
values of characteristics as a time series. For example, the Current
Population Survey (C.P.S.) of the Bureau of the Census is , among other
things, concerned with estimating monthly and yeerly changes in the level
pf unemployment. Estimation problems in time séries analysis have, of
course, received considerable attention for same time but most of these
studies are devoted to the estimation of paerameters in time series models
usually involving the concepts of infinite populations. On the other hand,
most of the distribution free theory of sampling finite populations is
concerned with estimates applying to a population at one particular time,
and applies to so-called 'one sghot surveys'. In this study we attempt a
| combination of finite population sampling with-t:'lme series analysis. This
| activity, sometimes referred to as 'sampling on repeated occasions', has
alreedy received same sttemtlon although same of the references we dlecuss
below are only concerned with infinite population models.

When the same population is sampled repeatedly, the opportunities for
. a flexible sample design are increased. For example, on the hth occasion
 we may have parts of the sample that are matched with the (1-1)*" occaston,

perts that are matched with both the (h-1)™! and the (h~2)*® occasions,
*Research sponsored by Army Research Office, Durham, N. C., under

Grant NO. m-ARO(D) "31'12h'®3.



" and soon. Such a method of partial matching has been termed "sampling
on successive occasions with partial replacement of units” ([5]), "rotation
sampling” {[2]), and “sampling for a time series” ( (3]). The optimm re-
placement policy for two occasions has been investigated by Jessen [1;] and
the general problem of replacement for more then twoe occasions has been |
examined by Yates [7] s Patterson [5] , Bckler [2], and several others.
However, the theory has been almost exclusively confined to infinite
populations, A good summary of these papers is given by Cochran [1].

In the Current Population Survey conducted monthly by the U, S.
Bureau of the Census (Hansen et al. [3]), a rotation sampling design is
imposed within each primary mainly for the purpose of reducing response
resictance {which way occur if the seme panel of households is interviewed
indefinitely), and to reduce the within primary component of variance of the
estimates under certain clrcumstances. The rotation pattern is as follows e
elght systematic sub-seamples (rotation groups) of segments are identified
for each sample. A glven rotation group stays in the sample for four
consecutive months, leaves the sampie during the eight succeeding months,
and then returns for another four consecutive months., It is then dropped
fram the sample., Under this system of sampling, 75 per'cent. of the sample
segments are common between consecutive months and 50 per cent are camon
between the seme months of two consecutive years.

The camposite estimator of the population mean, 'io, of the current

month (denoted by 0) in this survey is

ot

xo = Q(x-l + x05-l - x“l,O) + (1 - Q) xo (1)
vwhere Q is a constant welght factor with 0 £qQ £1, ;0 is the estimator

based on the entire sample for the current month, O, ;0,-1 is the estimator



for the current month but based on the sample segments cammon to both months

O and -1, x_‘l’0

the sample segments common to both months O and -1, and ;-'-1 is the composite

is the estimator for the previous month, -1, but based on

estimator for the previous month, -1. The canposite estimator of the change,
xo - x_l, is

0 = ;6 - X:.l ° (2,)

The camposite estimators tuke advantage of the information obtained on
previous occasions as well as the informetion fram the current occasion,
and results in smsller variances for both the current estimate and the
estimate of change for most of the cheracteristics; the larger gains are
usually achieved for the estimate of chenge.  Fansen et al. [3] have given
the variance of x! and 4!

0 0
same simplifying assumptions and inveetigated the reduction in the within

, for their particular rotation pattern, under

primaxry camponent of the variance cf ;5 and d.a for same alternative assumed

correlations between months and for selected values of Q.
The purpose of the present study ie to develop e unified finite pop-

0 0
general rotation pattern and obtain the veriance of the composite esti-~

ulation theory for the camposite estimators X! and d!. We formulate &

mators explicitly. We also obtain the optimmm valuves of Q under certain

js::lmplifying assumptions regerding the ccrrelstion pattern fram occasion to

occasion. The variance for the particular rotation petitern used by

Hansen et al. can be obtalned s s special case Ffram the general results.
Onate [6], in developing multistage designs for the Philippine Sta-

tistical Survey of Housenolds, q.’w.tded each sarmple barrio (a second stage

unit that corresponds to a township in the Urited States) into a small

. mumber of segments (less than 10) and specified a particular rotation
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pattern for the segmenis. This rotation pattern was mainly intended to
reduce the response resistance of panel households, for it was observed
that the households tended to became uncooperative during the third or
fourth visit, Moreover, Onate developed a finite population theory for
the composite estimator of the barrio total for his special rotation
pattern (which is a special case of the general rotation pattern). We
follow Onate's approach in developing a finite population theory for the
general rotation pettern. We give here the results for single-stage
designs, but the extersion to multistage designs, etc., is relatively

straightforward and therefore is not presented here.

2., THE GENERAL ROTATION PATTERN

We assime that the actual units in the population remain unchanged in
time, and denote by N and n the population and sample sizes, respectively
(which are the seme for all occasions). Also, let N and n be multiples of
na(z_ 1). Ther the rotation pattern is as follows: A group of n, units
stays in the sample for r occasions (n = nzr), leaves the sample for m
occasions, cames back into the samplé for another r occasion, then leaves
the sample for m occasions, and so on. If a unit returns to the sample
after having dropped out (k - 1) previous times fram the sample, we say

the unit is in' the kth cycle, We only consider the case m > r here, for

casem < r is more camplicated and less useful in practice. The maximum

value of m 18 r(3 - 1) and, 1f m 15 less than the maximm value, it
amounts to covering only a fraction, viz., n + n of the N units in the
rotating design.

Tllustration, Let N= 5, n=r = 2 and m = 3, Figure 1l illustrates

O



the
the rotation pattern for a particular numbering of/ 5 units in the population.

There are 5! possible permutations corresponding to the 5! ways of numbering
the units in the population. The numbers 1 to 5 are assigned to the 5 units
in the population. These permutations provide the stochastic input into

the sampling design since it amounts to saying that the sample consists of
one permutation selected at random fram the finite population of 5!
permutations.

-

Figure 1. Rotation pattern with N=5, n=r = 2 andm = 3,

Visit

Undt € =5 =l 3 2 -1 0
1 X X X
2 X X X X
3 X X X
4 X X
5 X X

In general, the finite population is composed of the N! possible
permutaticas and the sample consists of one randomly selected permutation

from this population.

3, THE COMPOSITE ESTIMATORS 3?6 and 4}

et xa,j denote the value of the characteristics for the Jth unit on -
the P occasion, (@ = 0, =1, see, =u; J = 1, +0os, N), vhere -u denotes
the occasion at which sampling first tekes place. Wé assume that u 1is
large in order to simplify the derivation of the variance formulae.

The canposite estimator of the current occasion population mean, i'o, is
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xo Q(x_l + XO,_l x_l’o) + (1 Q) xo (3)
where
zl z fa %, =z
a,a-l Jcoz,g/nl’ X1, "~ T xar-l,.j/nl’ X = f xa,:j/n ’
;-1 is the composite estimator for occasion :i, and 0 € q <1.

Here n, = na(r - 1) 1s the mmber of units matched between occesions & ~ 1

and &, The camposite estimator of the population change, io - i-l’ is

Now 25 can be written as
- u -u N (5)
= 2 Q%W_ = = = w 5
° &0 @ " o kel Ok Tk
where
o= Xy o1 = Xgup,o) + (1 - Q) X, (6)
for @ =0, 1, cou, = (u=1), W_ = ';?_u end the W . are functions of Q,
r end ny,. From (5) and (6) it may be verified that the weights W, i 8re as
'’
follows:
For the current occasion, a = O,
(a) Yo x ™ (1 - Q)/n for n, units (first visit of a cycle)
(v) Vo ™ (1 ~-Q)/n + Q/n for n, units (second to rt
visit of a cycle) (7)
(c) Vo = O for N - n units (not in the sample)
b .

For occasions & = =1, «ss, =~ (u = 1),

- -a
(a) Yok = & 1-9). -O*n;- for n, units (first visit of a cycle)
¢4

n

- .
| Q (1 -4q)
(v) Vo k = — + nl 9'-1— for n, ttrie units (second
to (r-1)"" visit of a cycle) (8)

D ) R
n

(e) LA for n, units (rth visit of a cycle)
)

ny
(d)wak-O for N - n units (not in the sample)
¢4



For occasion -u, w_ , = QX(1/n - l/nl) for n, units (first to (r-1)R visit),
’

= Qu/n for n, units (r‘th visit), and V=0 for Nen units (not in

Yo,k 2 ,k
the sample). Therefore s the averages of the welghts over the N! possible

permutations are

;1 X 1 ¥ 1
y e m—— - ! = - P
E("o,k) w f (v - 1) Yok TN f"’o,k N
and
1 ¥ 1 ¥
= e - 1 = = =
E(wa,k) = 55 lz(N 1)! Yok = § f Yo,k 0, @< O,

Hence, x(') is an unbiased estimator of EO' Similarly, d(') is an unblased

estimator of Xo - X-l'

4, VARIANCE OF ;g)AND OPTIMUM Q

4,1 vVariance of ;6

Since u is assumed to be large, the variance obtained by replacing -u
by ~oo will be virtually the same as the true variance, Therefore, the
variance of Eé, V(;é), is

v(xy) = B(x!2) - %

(¢}
- N ( 2 ) 2 -0 N ( |
= % I E(w x, .+ L I Ew W e ) X0 X
=0 k=1 a,k’ "o,k odot k=1 o,k o'k’ "o,k Ta'k
=0
S T™® N - N
+ afo kfk' E(wa,k Va,k') ok Lokt qfa' k:‘:k' E("a,k Vet
=] -Q =]l . xa’k xa'k'
(9)
N N
Now, since fwo,k =1 and _f.wa,k =0, a< 0,
o1 2 2
E(Wo x Yo, k') = WF -1y - W1 E(Vo,x)
1 2 ,
E(wo,x Yaxt) = = T=T EWg)r @< 0 (20) .
and
-1 s ad o -
E(Va,k wa'k") R~ E(wa,k Va'k), a;‘ Q' =0, =1,..s, =00



Using (10) in (9), we have

- 2 2 1 - 2 2
4 - -
V(x) = 8 [ N E(wg ) N] + N E(vy )8,

=1
«00
" qégvno E(wa:k wa'k) Sa,a' (11)

where Sg is the mean square for the czth occaslion and Sa ot is the mean
¢4

product between occasions O and ot. Note that the variance formule (11) is
N

quite general and is applicable for any set of weights wa,k such that Z wa,k =

N 1
a< 0, and szk 1.

For the general rotation pattern the welghts w are given by (7) and

0,k

the welghts w. (0 < 0) are given by (8). Using these weights, we evaluate

o,k
E(wd,k) and E(wa,k a'k)‘ Now
N n
2 1, 2 2
w(,k) f"o,k"n(l""'Q) (12)

!

N E(

N n
N E(w2 ) = sz -—2— -2
ok’ T 7

a,k = mlN
a,k Vorx) = ‘12" k
pettern and the weights in (7) and (8), we obtain, after simplification,

(Q +2—Q+1 a < 0,
l

Noting that N E(w Vorx? and using the general rotation

the expectations E{w o,k ct'k) given in Appendix A. For example, since n,

units are comuon between occasions O and -s(r + m) -1, 8=0, ..., 00,
N

"-s(r+m)-1,k) = 2V, x Vog(r+m)-1,k

NE (wo’k 2

S [ ze - ydzd, )

+<n1-ne><}-i-9‘+ﬁ;~%;><l—;ﬁ+§;>]

= - 1 (l + == Q) (r+m)+1

o,



Substitution in (11) of the expectations (12) and those of Appendix A ylelds
the variance formula in Appendix B. It is interesting to note from Appendix B
that the effect of the finite population of size N on V(E(')) is simply to
subtract ~S(2)/N from the varlance of ;C') derived by aasmning N infinite.

The veriance formula (B-1) is very unwileldy and, therefore, we consider
twe models for Si and S @, which simplify the veriance formula and enable

the
the evaluation of?optimmn Qe

Model 1, We first consider an exponential correlstion pattern. The model is

2

2 -B .2
Sq ™ 52 8 and So,s =p " 8, (13)

a’ B: -1, "2, s0ey =00,

a,008 = 50,8

This model has been used Ty Patterson [5] and others, and appears to be a
satisfactory assumption in many practical situations. Equation (13) is a
special case of a more general model S a= So pa withp=1 + S , where § is
e small positive number. Our calculations, however, have shown that the
variance with § = 0 is practically the same as the variance with a small $
(say 0.03). Therefore, we confine our study here to the simpler model, (13).
With thie model, the variance of E('), given in Appendix B, reduces to

3 2

2n2QS

v(;t).(.l.:-.];) 32 9
T RTE T BRI - eF 1- (@

)r-un

‘[Qa[rpe-(r2+1)p+rj +Q[r(r-1)p%-2(r-1)p+xlr-1)]
(=120 4+ 52 Qz[:(r-l)pakr(r-l)pj
+Q[-(r2-2r+2)02+2rp-r23-(r-1)02+r(r-1)p)

s @ Q2 [P err+ 1) p-r] +Q7 [ 2r(r - 1) p = (r=1)(r+l)]
+Q[rlr=1)p - (r-21(-2)] + (r-12)+ &F PTCI [xlr - 1)p?
-r(r -1 pl+f[rp- (2" -r+1)p +r2]+Q[(r-1)(r-2‘)p

+r(r=1)] +(r-1)p - r(r - 1))} . (k)
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For moderate and large values of m (which implies that N is large), the
following formila for V(x}), cbtained fram (1k) by substituting m = oo
and ignoring the finite poﬁulation correction term (i.e., the tem -Sg/N),

i}).s a good approximastion:
Sg
V,x! o —

( O) n +

21 4 85

nono(1 - D)1 - o

)72{ Flro®- 6 +1)p+r]

+qlr(r - 1) 92;2(r-1)p+r(r-1)]‘- (r - 1% p + Q5p™L.
(Qe[- (r-1)02+r(r-l)p] +Q[-(ré-2r+2)pa+2rp-r21
- (r -1) p2+r(r-l)p)_} . (15)

Our calculations in sub«section L4.2 indicate that for moderate and large
values of m, V(;é) as obtained fram (15) differs very littie from that
obtained fram (14), and the optimm values of Q are unaffected by m in
most cases.

The special case x

ok = Xty o,a' & 0, «1, ,,., =00, provides a check

on (14); 'Then ‘:-:'(") reduces to

- - Ll
xp = (1-2) I Q7 x,

=0
and
=y 21 *® .2q = e . L
V(=) = (1 - Q) [ofo VR + 2 quz LR covlx g B )] -
- (16)
Now
v(;a) = (%1: - %) Ss
p g - n2(r -iit'): 1 2
Cov(xa, xa-s(r+m)-t) = [—?-—— - % :l 8, for t< r
2
Sa.
CO‘V(;Q, ;d-s(ﬂm)-t)' = - 'ﬂ.'o' for r i t s_ n

t ,
Cw(;a’ ;a-s(rm)-n-t) = (r?ng - %) Sg for 1< t <& r.
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Substituting these values into (16), we find, after simplification,

2

2
- 2n, Q S
V(g = (G- ) S5 - F—

[1-7 - +a™™ |, (a7
n“(1 - Q)(1 - Q¥'™) [ ] a7

The special case x = X1y implies p = 1. Withp = 1, (14) reduces to

o,k
(17), thus providing a check.
The per cent gain in efficiency of ;(') over ;0 is
- V(x!
V(xy) - v(x}) .
v(x})

100 (18)

vz, = G -3 S5 . (19)
Model 2. We now consider an arithmetic correlation pattern similsr to that
of Men et al. [3]. As mentioned earlier, the empirical results with
Model 1, given in sub~section 4.2, indicate that v(§6) computed from (14)
with m = co differs very little from v&a) with moderate m, and the optimum
Q 18 unaffected in most cases. In order to simplify the discussion we,
therefore, corifine ourselves here to an arithmetic correlation pattern and
to the variance of §6 with m = oo, The model is ‘

2

2 ‘
Sa- So, SQ,GO-B = SO,B, a,ﬂ = -1, se0y =Q0 ; t = 1" 2, [ XX K] 1‘-1 (20)

y 2
So.q= [P+ (a+1)a]ls;for-(a+1)agp

0,
= 0 for = (d+ 1) d>p
where d is a small positive mumber. Using (20) in the general variance
formila, given in Appendix B, withm = o, and neglecting the finite popula~-
tion correcgion term, we gbtain
S 23

1) e 2 0
el nr(r-1)2(1-0%)(1-Q)

Ve ()3 - v 4] + @[ - (-1)2 + (x-1)(2r-3) Q + (2r-3) @ - (2Pelr-1)Q]
+ 2(r-b)tr@® ] + Q%al (r1)(r-2) - (r-2)% - (rP-2r-2)Q? + r(r-1)03 + "]}

3{Q2[r(r-1) - r(3r-4)Q + 3r(r-2) Q°



2 r+1

B, Q "a ¢ N 2 2
*— T L~ rir-2) + (3r"-8r+2)q - (3r"-10r+h)Q
nr(r-1)(1-7)(1-q)

2 r+l
2SOQ o

+ (:c'a--lnr+2)(;z3 } + —

. 21
nr(1-0%) @)

The per cent gain in efficiency of 5?6 relative to ':Eo nmey be computed from

(18) using (21) and (19) without the finlte population correction.

L.2 Optimm Q and per cent gain in efficiency
Model 1. Using an IBM 7074 with a 20k memory we computed the per cent gain

in efficlency fram (14), (18) end (19) for @ = 0.1(0.1)0.9, p = 0.5(0.1)0.9,
r = 2(1)4(2)8 and m = sr with & = 1(1)4, 0. In camputing the per cent
gain in efficiency we ignored the term -S(2)/N in (14) and {19), since it does
not change the optimm velue of Q. The effect of ignoring -Sg/N is to
~decrease the per cent gain in efficlency. The optimm Q for each cambination
(r; p, m) is that velue of Q vhich gives the maximm per cent gain in
efficiency. The optimm Q given below 1s correct to oniy the first decimal
place., However, it is quite satisfactory since amall deviations fran the

, true optimm leed only to & very small loss in efficlency., Table 1 gives

' the per cent galr in efficiency and the optimm Q for the selected velues
of r, m and p. Ceversl interesting results ewerge fram Table 1. First,

" the value of V(';c'(')) for moderate =m is virtually the same as that for

'm = o obtained from the simplified formula {15), Secondly, the optimm Q
is unaffected by m (except for the case r = b and p = C.9 where the optimum
Q deviatee by 0,1 framm = bt to m = 8), Thirdly, the optimm value of r

:, is 2, However,; if we are interested in eétimating the change simultaneously
then r = 2 may not be optimum., Moreover, other practical considerations may
| sanetimes warrant the use of an r other than 2, Finaliy, the gains in

efficiency of ;6 over ;0 are only moderate, even with a fairly high p.
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Table 1. Per cent gain in efficiency of 3?(') over ;O » and in parantheses

optimm Q
_ELp 0.5 0.6 _0.7 0.8 0.9
r=2
2 5.2(0.2)  8,5(0.2) 14,2(0.3) 22,8(0.4) 38.8(0.5)
" 5.3(0.2)  8,7(0.2) 15.3(0.3) 26.7(0.4)  50.6(0.5)
8 5.3(0.2)  8.7(0.2) 15.3(0.3) 27.1(0.4) 55.7(0.6)
oo 5.3(0.2)  8,7(0.2)  15.3(0.3) 27.1(0.4) 56.2(0.6)
r_:_i
3 4.2(0.2)  7.2(0.3) 12,0(0.4) 20.2(0.5) 36.6(0.6)
6 k.2(0.2) 7.3(0.3)  22.4(0.4) 22,3(0.5) 45.3(0.6)
9 L.2(0.2)  7.3(0.3)  12.4(0.4) 22,4(0.5) 146.7(0.6)
® 4.2(0,2) T7.3(0.3)  12.4(0.4) 22.,4(0.5) 47.0(0.6)
rel
b 5.3(0.2)  5.8(0.3)  9.8(0.4)  17.1(0.5) 32.4(0.6)
8 3.3(0.2)  5.8(0.3)  9.9(0.4)  17.8(0.5) 38.6(0.7)
12 3.3(0.2)  5.8(0.3)  9.9(0.4)  17.8(0.5) 39.8(0.7)
- 3.3(0.2)  5.8(0.3) 9.9(0.4)  17.8(0.5) 40.0(0.7)
rs6
6 2.3(0.3)  L.0(0,3) 6.7(0.4)  22,0(0.6) 26,0(0.7)
12 2,3(0.3)  4.,0(0.3) 6.7(0.4) 12,2(0.6) 28,3(0.7)
18 2,3(0.3)  4.0(0.3) 6.7(0.4)  12,2(0.6) 28,5(0.7)
© 2.3(0.3)  4.0(0.3)  6.7(0.k)  12,2(0.6) 28,5(0.7)
r=38
8 1.8(0.3)  3.0(0.3) 5.0(0.4) 9.2(0,6) 20,6(0.7)
6 1.8(0.3)  3.0(0.3)  5.0(0.k)  9.3(0.6) 21.3(0.7)

© 1.8(0.3)  3.0(0.3)  5.0(0.k) 9.3(0.6) 21.3(0.7)




Model 2. From (21), (18) and (19) we computed the optimm Q (using the
seme procedure as in Model 1) for d = 0.05(0,05)0,20, p = 0.6(0,1)0,9 and
r=3and 4k, With r = 2, the per cent gain in efficiency and the optimum

Q are the same for both models.

L

Table 2 gives the per cent gain in

efficiency and the optimm Q for the selected values of d, p and r.

the per cent gain in efficiency and the optimum Q@ for Model 1 with m = oo

are given for compsrison.

Table 2, Per cent galn in efficlency of 3?(') over ;O’ and in
parantheses optimm Q

a 0.6 0.7 0.8 0.9
r=2
0,05 8.7(0.4) 15.4(0,.5) 28,7(0.6)  56.1(0.7)
0.10 8.3(0,4) (04 25,0(0.5)  146.8(0.6)
0.15 8.0{0.3)  13.5(0.4)  22.9(0.5)  141.2(0.6)
0.20 7.6(0,3) 12,6{0.4)  20.8(c.5) %.1(0.6)
Model 1 7.3(0.3) . 12.4(0.4)  22.4(0.5)  47.0(0.6)
!‘=’+
() .05 8.0(0.k) 14,3(0.5)  25.9(0.6)  49.3(0.7)
0.10 7.1(0.4) 12,3(0.5)  21.2(0.6)  37.0(0.7)
0.15 6.3(0.4) 10,7(0.4)  17.9(0.5)  29.9(0.6)
0.20 5.5(0.4) 9.8(0.4)  15.8(0.5)  25,0(0.6)
Model 1 5.8(0.3) 9.9(0.k)  17.8(0.5)  40.0(0.7)

Teble 2 shows that model 1 is fairly robust to moderate deviations as

shown by the alternate aritimetic model calculations, and the optimwm Q for

models 1 and 2 are either the same or deviate only by O.l.
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4,3 Variance of ;6 for the Current Population Survey rotation pattern

As described in Section 1, the rotation pettern for the Current Popula=-

~tion Survey 1s as follows: eight rotation groups each of ny units are
identified for e@ sample and a rotation group stays in the sample for
four consecutive months, leaves the sample during the eight succeeding
months, returns for another four consecutive months and then drops out.
Therefore, the sample size is n' = 8n2 =2n, r=4%andm =8, On any

occasion, ll-na of the units in the semple are in the first cycle and the
remaining hna units are in the second cycle (since there are only two

cycles for each rotation group). The canposite estimator §6 can be written

as
- -® N )
*x*! = I Z v %
with varlance
Fa ofa2 17 2 -® 2 2
’ - =
VGxy) = [N E(vp, i) .N] Sg*+ N a::_l E(Ve,x) Sa
-0 .
+ N C:‘:a' E(va’k Va'k) sa, o (22?
=0
where Vak = Yo, x/2 and o,k 8T€ the weights defined in (7) and (8). Also,
2 1 2 - 1 - o .
E(Va,k) = 3 E(va,k)’ E(Va’k va'k) 2 E(wd,k wd'k) for @' = a.l, 0-2, =73

1 .
E(Va,k vd'k) =¥ E(wa,k wa'k) for o' = 0-9, ..., 0~15; da' u 0, =1, +4s, =,
and all other expectations are zero., Therefore, using the expressions for
E(vg,x ¥ori) 804 E(Va-’k ¥) the variance of X! is easily cbtained from (22).

5. VARIANCE OFdaANDOPI'MMQ
S.1 Variance of d(')

The camposite estimator of the change, 'io - 3!'_1,‘ is d(', = ;(', - ;!1



with variance
' 1 gt - Covix!. x
V(do) = VGO) + V(x_l) 2 uOV(Xé, x_'_l).
The derivation of V(Szil) and. Cov(;é, ;11) is similar to that of V(E(')). Hence,
without derivation,we have given the general formule for v(ag,) in Appendix C,
For Model 1 the gzneral formulsa reduces to
3 2
2112 So (l - Q)

F(ar) = 2(2 - 2)(1 - p) 82 - = — .
v(ag) = 2y - P - 0) 5 nny(1 - )" (1 -¢°) 1- ()™

{ - (x-1)% + (2°-5143) @ + x(r - 1) &° + (2Pr-3) B
- v(3r-4) Q%% - r{2r-3) &% - rQ® + (3rZ-2r41) %

r{3r-2) Q%p2 + r(r-1) Q%> - r(r-1) the + r(r-1) th}

+

o™ [r(r-1) p - (1) p2 - 20 = (r-3) o - (rP3r+3) Qo

77 + r(r=3) &G + (x°-3r+3) Q%2 - r(r-1) &% + (r-1) %2 ]

+

@™ [ (r-1)% - (2x25r43) Q - r(e-1) @ - 3(r-1) &

3r(r-1) Q% + (ra-r-l) Q - r(r-3) % - 2002 + rQh

+

+

2L 2 m+r m+r
Qp

r(r+l) th +r +Q " p [-r(r-l) + (r<1) p

+

3r(r-1) Q - 3(r-1) Gp + r°Q° = (622 = Tr + 3) Q% + r(2r-1) Q202

- 1293 - (rB-2r-1) &% + rlbr-5) %2 - r{r-1) Q%> + r(r-1) Qup

r{r-1) th3 J} .  (23)

The special case x. . = x , provides a check on (23). Then
a,k = Xark

=00 - - -
t - - -
a8 = (1 -q) cfo QT (xy =% ,)
and, using the formulee for Cov(?:a, ;a') glven in sub=gection 4.1, we obtain

after simplification .
2n,5g (1-0)° r rmy
' = - - ) . “'
v(ay) Py Q-9 -q"+q™ (24)
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With p = 1, (23) reduces to (24), thus providing a check.

The per cent gain in efficier'xcy-of d6 over the estimator do based. on
the difference between the sample means ‘of two independent samples on
occasions O and -1 is '

v(a,) - v(aj)

-——-ng)-.—r x 100 (25 )
where
via,) = 22 - %) o2, (26)

Since the results in sub-séction 4.2 indicate that model 1 is fairly robust

to moderate,deviations, we did not investigate model 2 for change estimation,

5.2 COptimm Q and per cent gain in efficlency

As in the cese of the current estimate, we ignored the term involving
1/N in (23) and (26) and computed the per cent gain in efficiency fram (25)
. for § = 0,1(0.1)0.9, p = 0.5(0,1)0.9, r = 2(1)4(2)8 and m = sr with s =
: 1(1)4, o. The optimum Q for each combination (r, p, m) is that value of
| G which meximizes the per cent gain in efficiency. Table 3 gives the per
cent gain in efficiency of d(') over do and the optimm Q for d('). The per cent
| gain in efficiency of d(') over do and the optimum Q for ;6 from Table 1 is
also included in Table 3. It may be noted that in most situations we are
forced to use the seme value of Q for both x and d}. If the current
occasion estimate is more important, we may prefer to use the current
yeeesion optimm Q for both d(') and, 326

Table % shows that considerable gains in efficiency of dé over do can
' be obtalned using the optimm Q for d('),‘ even with moderately large p. Aliso
the cptimm Q for 326 leads to substential gains in efficlency of &} over d,,

though the gains with the optimum Q for d(') are lerger, particularly for
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high p. Unlike the current occasion case where the optimum r is 2, the gain
in efficiency of dc') over do increases with r, Therefore, if both current
occasion and change are of interest, we may prefer to use an r other than 2.
The variance of d(') for moderate and large values of m differs very little
from the variance of dé withm = oo, The optimum Q for dc', is unaffected by

the value of m in most of the cases.

6. CONCLUDING REMARKS

In many practical situations, the exponential correlation pattern
(model 1) may be quite reassonable. Also, a comparison with the arithmetic
correlation pattern (model 2) showed that the exponential correlation
pattern wes fairly robust to moderate deviations. However, in a monthly
survey with characteristics str--gly influenced by seasonal variations, the
correlation between occesions 12 months apart may be about the same mag-
nitude (or even larger) as campered to the correlation between consecutive
occasions. In such situations, model 3, |

1 32

Sa, 01251 = So,--123-1 =P P3 Sy

where Py is the correlation between consecutive occasions and (2 is the

i= 0, 1, eo ey 11; J = O, l’ 2,- [

correlation between occasions 12 months apart, may be more appropriate.
Then, it is necessary to generalize the composite estimators i'(') and d6 and

construct composite estimators which take advartsge of both Py and Pp

‘explicitly. This problem hes b+ investigated and the results will be

published in a later zmper. in. generalized composite estimators lead

to considerable geins in efficiency over ;0 and dé, vhen Py and Pa are of

approximately the seme magnitude.
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In large scale surveys multistage sampling is often employed. In a
two-gtage design, rotation sampling is cammonly used within each primary,

and, therefore, the camposite estimators reduce the within primary variae-
tion only. It may be reasonable to assume that the correlation of

gecondaries between occasions is espproximately the seme in each primary. Then
we could use the tables for the optimum Q given here and construct com-

posite estimators, with the same Q, within each selected primary, and then
determine the camposite estimator of the over=-all population mean. For the
estimator of variance, we could use the estimator based on the mean square

of the within primery composite estimators (this estimator of variance is
unblased if the primaries are selected with replacement; if the primaries

are selected without replacement it over-estimates the variance).

We wish to thank Professor H. O. Hartley for helpful suggestions.

APPENDIX A

The expectations E(wa‘,k Vo)

The expectations NE( ), @& -1, are as follows:

Yo,k Yo,k

s(rﬂn)’

n n
NE(VO,k w-(8+l)(,r+fm),k) i (1 + Ty Q)a Q 820, 1, eo0 ®
1

Ny - n
: 2 2 12
Y0,k w-s(r+m)-l,k)' == ;5 (1 + ;'1'; Q)

2
no n, |

NEC¥o, V_g(rm)-t, k) = 2 1+ n, Q) [t(1-q)-r] d
l t = 2) ee oy r-2.‘

s(rm)+1

NE( Q

8(r+m)+t

n n
NE(Wo,k w-s(rﬂn)-r+’1 k) = - -% 1+ ;1-]2-- Q)(qQ + ;1?;) QS(rﬂl-m)ﬂ--]_
’ n

n | g
NE(Vo,k "'(r*ﬁ)'ms-l,k) - -g (1 + ;’nf Q)1 - Q) QS(r+m)+m+1
n : :
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n2 n n
2 2 2 .2\n
NE(w, , W ) = (1+2—-Q-_Q)_
0,k "-s(r+m)-m~t,k n§nl [ ny n,  ’n,

+(Q - 1)(1 + -:;f Q) t] Q‘s(r+m)+m+'l;,

t = 2, seey r-1.

I{E( ) = o, t = o, eeey M=T,

Y0,k Y-s(r+m)-r-t,k

The expectations NE(w X oz'k)’ a o {1, (¢4 a'), are as' follows:

n
NE(w,, ) = =2 (g2 + 2 24+ 1) o8(rm)-20
,k Voms(r+m),k nn, n,
3
2 2, s(r+m)-2o4t
NE(wa k Yor8(r+m)-t, k) =" ‘5"5 (L~ tq (r4m)
nl t = 1’ teoy r'2
i 2 s(rm)=204r~1
NE(wa;k wa-s(r+m)-r+l,k) =- ;é' (1 + 'H'l Q)(Q + = ) Q®
.22 %2 0y 85, s(r+m)-20m+l
NE(wa’k wa-ﬂ(rﬂn)-m-l,k) = ;‘é’ (1 + ;I Q) + =) ¢
ng .
NE(Vo, x Vors(rm)-m-t,x) =~ 23 (F - )1 - Q) o8 (r+m)-20mst
n“n
1
' t'=2, seey rel
m(w k ws(r.'.m)-r-t,k) - ‘o, t - o’ seey nm=r,
APPENDIX B

Variance of 3?6

The variance of ;C') for the general rotation pattern is

V(xy) = (..-l) S5+ nl qes§+2-:§(1+-:§a)(1 Q) &L,
2
2 Elrm) 22 o (rm)*
sfo Qe %0, -8 (rm)-m-1 * s i 1, Q?sfl S é0,-'ll(1~ﬂn)

-



2
n r-l i n n n
\ 2
vz @ a+elBe-2AE.a-00+201].
n nl t=2 1 1 2 1
Q ) l’l2
s(r+m
b ) S + 2 (1+ Q)zQ t(L-Q) -7
=0 0,-s(r+m)-m~t nenl ny [ ]
o8 (r+m) 2 -2a 2
z: ) 2 (Q + 2 2 Q + 1) z Q
0 O,-s(rm)-t n, ol 54
3
n
2 4. \2
(Q+2—Q+l) k3 Q2 zQ(r*’“‘) - 2= (1-9)5
nn, ny oy gul a,a-s(r+m) n2n2
r=2 - ® n n n
-20¢t s(rm) (2 2 2
2tz Q zq ol - 25 Q)q +=)(1 + —=q).
tel  o=-1 820 a, a8 (r+m)-t 02 n ny
=0 o o2 n, n.Q n
-20%r-1 s(r+m) 2 2 2
L Q zqQ s c2-% (1+=)(Q+=).
el =0 o, a8 (r+m)-r+l1 ;? n, n,
| 3
-0 [« o) ) n r-1
T =20am+l s(r+m) 2
T Q z Q S 2es==(1-0Q)° = (r=«t).
el =0 a,0-s(r+m)em-1 " 2n§ £32
-0 o
r QrloMmt o Qs(rﬂn) g
el =0 o, -8 (r+m)-m-t
r-1
This formula is valid for r> 2, For r = 2, replace the terms involving =
r=-2 1

and Z by zero.
2
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APPENDIX C

Variance of d(')

The variance of‘ol(') for the general rotation pattern is
v(ar) = Q_gﬁf VE') + SEL"E}_I[ E-dys?, 2l .l g2
0 q 0 ' a n N 70 hy n’ "0

21 1y 2 _ o0l _ 1 JPN-T0 S |

+Q (“1 §) s_; - 2z - 3) 8,1 = 2 (nl =) So,-1 ]
.20 -9) ¢ o8(r+m) ";:1 ot

Q‘2 8=0 t=1

o ‘
{ n2"n2 ‘(nl 0y Q) [ (r - t) n- thQ] sO,-B(r+m)-t
1
l "
- :na Q(nl + naQ)(nl - tna).
1

T 1.2 ,
%0,-s(rtm)-t-1 ¥ 2 ¢ (ny = t05) 53 ¢ (pam)mto1
1

- %59 [nny = tng(ny + Q)7 .

| 2(1 -¢) ¥ 2
S.1,~a(r+m)-t] * _(_,Ealm 2 (5, = 90,01 - By,

>
A8y eop)

21 -9) P e(rm) T3 met ( P2
) Q2 sfo q tfl - { ——§n X (n, + an)[ t(n, + nQ) - nq] .
‘ 1

n

sO,-s‘(r-l»m)-m-t
2 Q[ t(n, +nR) -m] s I (t - 1) @
] [ i R ] 0,~e(r+m)-m-t-1 ~ 2 - e
any ny

S‘-l, -g(r+m)-m-t-1
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=]

. o 2(1-q) ¥ slrm)
= (t - 1) Q(nl + naQ) S-l,-s(r+m)-m-’c} - 5 z Q .
m Q s=1

1 a2 Y -
{;EI (ny +187) 8o, _g(rem) ~ T, ARy *+ 2% S0, g (rum)-1

1 .24 &
T % S.,u8(rm)-1 " nn, Uny + n0) s-l,-s‘(rM)} ’
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